equation we have is Y''+const.Y'+Y = G(x)
assume particular solution is Yp = u1y1+u2y2 ............(1)
Yp' = u1'y1+u1y1'+u2'y2+u2y2'
assume u1'y1 + u2'y2' = 0 then Yp' = u1y1'+u2y2'
Yp'' = u1'y1'+u2'y2'+u1y1''+u2y2''
putting all these values in (1)...we have
u1'y1'+u2'y2'+u1y1''+u2y2''+const. * u1y1'+const.u2y2'+u1y1+u2y2 = G(x)
u1(y1''+const.y1'+y1)+u2(y2''+const.y2'+y2)+u1'y1'+u2'y2' = G(x)
y1''+const.y1'+y1 = 0 as per the general solution ..we are left with
u1'y1'+u2'y2' = G(x) ........(2)
u1'y1+u2'y2 = 0 ...(3)
u1' = -u2'y2/y1
u2' = G(x)*y1 / (y2'y1-y2y1')..............(4)
u1' = -G(x)*y2 / (y2'y1-y2y1').............(5).
substituting 4 and 5 in (1)...we have
Yp = y1*integration(-G(x)*y2 / (y2'y1-y2y1'))+y2*integration(G(x)*y1 / (y2'y1-y2y1'))